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SYSTEM AND METHOD FOR DISPLAY OF
SOFTWARE QUALITY

FIELD OF THE DISCLOSURE

The technical field of the present disclosure is related to
computing systems and more particularly related to tools for
development of software for computing systems.

BACKGROUND

Software has become a vital aspect of modern life and, as
a consequence, its high-quality is a major concern. Software
development is a distributed effort involving tens if not hun-
dreds of developers and thousands of lines of code. The larger
the software project, the greater the number of individuals
adding, editing, and testing code. It is recognized that tools
are needed in the software development and testing process to
allow IT project managers to improve productivity, improve
quality, reliability and reduce expenditure.

Typical software analysis tools provide the ability to inde-
pendently analyze software code statically and dynamically.
Static analysis can identify correctness issues in code without
actually executing that code, through techniques such as data
flow analysis, value tracking, and the like. Dynamic analysis
can provide information pertaining to timing and how much
memory is allocated, for example.

Yet, the tools available to quickly identify and prioritize
quality issues within software projects have been limited.
Major advances have been made by the scientific community
in designing techniques which help developers to indepen-
dently improve the quality of their software. However, an
aspect for achieving software quality is the ability to measure
not only an individual’s software development but the overall
software project. Despite many efforts, the goal of finding
effective quantitative, objective quality measurements of
software has remained elusive. Many important concepts in
software quality assurance (SQA), although derived from
good intuition and collective experience, do not lend them-
selves easily to measurement. Nevertheless, quantitative,
objective measurements are needed, since they provide a
concrete means to communicate, reproduce, analyze, and
compare individual outcomes. Assessing or measuring soft-
ware quality, particularly with respect to large scale software
projects, has so far resisted meaningful or practical, processor
executed algorithmic analysis.

SUMMARY

In accordance with a general aspect of the present matter
there is provided a method for code analysis comprising steps
of: inputting program code to an analyzer; assigning an objec-
tive quality measure to components of said analyzed code;
and computing metrics for display of the objective quality
measures.

In accordance with a further aspect the display may be a
graphical display.

In accordance with a still further aspect the display may be
an ordered list or table.

A further aspect of the present matter provides for a tool for
processing results from a static code analysis module into a
display of software quality to augment software development
and testing process to improve productivity, quality and reli-
ability of software.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be better understood with ref-
erence to the drawings in which:
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FIG. 1 is a block diagram of a computer system architec-
ture according to an embodiment of the subject invention;

FIG. 2 is an exemplary call graph;

FIG. 3 is an exemplary quality map where size and pattern
of circles are proportional to a number of lines of code and
defect density determined according to an embodiment of the
present invention;

FIG. 4 is an exemplary quality map illustrating quality
evolution according to an embodiment of the present inven-
tion;

FIG. 5 is a flow chart of a method according to an embodi-
ment of the present invention;

FIG. 6 is another exemplary call graph;

FIG. 7 is another flow chart of a method according to an
embodiment of the present invention; and

FIG. 8 is a block diagram illustrating architecture of a tool
for automatic program verification.

DETAILED DESCRIPTION

The following definitions are used in this specification,
others will be defined as and when they occur.

Procedure: In the field of computer programming lan-
guages and software, a software procedure refers to a series of
related instructions or statements to be executed by a proces-
sor to perform a specific function or task. A procedure is a
sequence of instructions that can be ‘called’ (executed) by a
processor a number of different times and from a number of
different places during the execution of a software program.
Often, one procedure will call another procedure and, in turn,
these procedures will call others, and so on. Most computer
languages allow arguments (parameters) to be passed to a
procedure at the time it is called, and one or perhaps more
return values to be passed back when at the time the execution
of'the procedure is complete.

Bug: A software ‘bug’ is a term used to describe an error or
defect in a software program that causes it to execute incor-
rectly. Bugs in software programs are common. The process
finding and fixing bugs, by looking at program code or testing
programs to ensure they are operating correctly, is called ‘bug
catching’.

Spec: An automatic program verification (APV) tool ana-
lyzes blocks of program code, such as procedures, to check if
they are free of certain types of bugs. In analyzing a proce-
dure, an APV may sometimes identify bugs in the code. Other
times, the APV tool may determine a procedure is free of
some types of bugs. To show the absence of bugs, the APV
tool tries to construct a correctness proof for the procedure. If
the proof process succeeds, the APV tool generates what are
pre- and post-conditions for the procedure. Pre- and post-
conditions refer to statements or assumptions about what is
true before and after a procedure is called. Specifically, pre-
conditions refer to what conditions hold at the time a proce-
dure is called, post-conditions refer what holds at the time a
procedure completes. This can be summarized by saying:

if (the pre-condition is true) then (no memory-related

errors occur and at least one post-condition is true)
In this context, a specification (or ‘spec’) for a procedure is a
correctness proof which maps a pre-condition to one or more
post-conditions. ‘Spec Coverage’ refers to a measure or met-
ric of how many of the possible execution paths through a
procedures are covered by specs. An exemplary commer-
cially available APV tool is Infer™ available from Monoidics
Ltd.

Call Graph: A call graph is a directed graph representing
the calling relationships between the collections of proce-
dures in a computer program. Specifically, in this graph, each
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node represents a procedure p and each edge (p, q) in the
graph indicates a call from procedure p to procedure q.

Traditionally methodologies developed for the analysis of
software systems can be classified in two major categories:
(formal) verification and testing. Formal verification is a
mathematical-based analysis which establishes whether soft-
ware P conforms to a given specification S written in some
formal language (e.g, Hoare logic or temporal logic). The
analysis is done by constructing a mathematical proof that the
software P satisfies the specification S: that is all the possible
run time behaviors of P conform to the behaviors allowed by
the specification S. If no proofs can be found, then nothing
can be concluded about how P conforms or does not conform
to S. Hence, formal verification typically can only provide a
rudimentary yes/no metric.

Testing techniques, which include dynamic analysis and
some kinds of static analyses, analyze software in search of
failures in the software to conform to a specification. Testing
can provide evidence of violation to conformance and, there-
fore, it gives metrics for non-conformance, such as the num-
ber of violations in P with respect to the specification S.
However, when no violations are found nothing can be con-
cluded about the conformance of P to S. Testing only checks
a finite set of runtime behaviors, and therefore, although the
tested behaviors may conform to the specification, this does
not provide enough evidence to conclude that in general P
conforms to S, in fact, there might still be untested run time
behaviors of P which may violate S.

The present matter describes a method and tool for mea-
suring conformance quantitatively, which is based on formal
verification, yet goes beyond the yes/no ability of traditional
formal analysis.

The present method has the following characteristics: 1) it
is algorithmic, and so can be executed on a processor and
results can be generated automatically; 2) it is mathematically
well-founded; 3) the results can be generated and displayed;
that is, they can be effectively communicated by graphical
means; 4) it can be applied to large scale software projects that
are too cumbersome and impractical for analysis by an indi-
vidual.

In very general terms the method is commenced by input-
ting results of a mathematical analysis of the software based
on formal verification. These results are used to compute
metrics of the source code. Three metrics are exemplified and
determined as follows. First, a metric of conformance of the
software with respect to a specification describing positive
features of the run-time behaviors of the code (e.g.,
no-crashes). We call this positive metric spec coverage (SC)
as defined earlier. Secondly, a metric which quantifies the
violation of the run-time behaviors with respect to the speci-
fication which we call defect density (DD) i.e. a negative
measure of the quality of the code. Thirdly, a metric, called
call rank (CR) which quantifies the importance of software
components (e.g., aprocedure of a file). Spec coverage, defect
density and call rank are then combined together in several
ways to display the current quality of the software and to help
identify which parts of the system should be fixed first d if a
goal is to improve the quality of the entire project. An aspect
of the metrics is that, although they relate to the possible
run-time behaviors of the software, they are computed at
compile time by means astatic code analysis. Therefore the
present methods can be used to assess the robustness of a
software project throughout its development and it can pro-
vide guidance for improving the overall quality. In summary
the present system and method combine previous measures to
give a snapshot of the quality of the system (a quality map).
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Referring to FIG. 1 there is shown a diagram illustrating a
system architecture 100, according to an embodiment of the
present invention. By way of illustration, the system 100
depicted in FIG. 1 includes a client computer 101 having
client processor and for a server processor 110 coupled to a
memory 120, a display 122, a user input 124 and communi-
cations interface 125. The system architecture may be distrib-
uted and a code analyzer 126 according to an embodiment of
the present matter is stored in the memory 120 for execution
by the processor 110 and code to be analyzed 130 is for
example stored on a data store 132, such as a local disk drive,
network drive, server, website, remote computer etc. The
results of the analyzed code may be processed by a display
application 127 executed by the processor for presentation in
one or more forms such as on the display 122, printed, saved
to a file or memory etc. The code analyzer and display appli-
cation may be Web based and accessed via the Web 128 and
executed by a user computer 129 using a Web browser inter-
face. Typically the code to be analyzed 130 may be portion of
a software project or the entire software project. The software
project is usually contributed to by a number of software
developers Dev 1 . . . Dev n working collaboratively from
different geographic locations.

As mentioned earlier a known commercial tool for auto-
matic program verification is called Infer™ by Monoidics
Ltd. for verification of memory safety of, for example, C
code. A block diagram of its components is shown in FIG. 8.
This APV tool is based on the theory of Separation Logic and
includes several advances in proof automation and proof syn-
thesis. Infer’s™ main features include: Deep-heap analysis
(ak.a. shape analysis) in the presence of dynamic memory
allocation. Infer’s™ analysis engine can precisely reason
about a variety of complex dynamic allocated data structures
such as singly and doubly and nested linked lists; It is sound
with respect to the underlying model of separation logic. Infer
synthesizes sound procedure specifications which imply
memory safety with respect to that model; it is scalable.
Infer™ implements a compositional interprocedural analysis
and has been applied to several large software projects con-
taining up to several millions of lines of code (e.g. the Linux
kernel); It is completely automatic: the user is not required to
add any annotations or modify the original source code; It can
analyze incomplete code. Infer™ can be applied to a piece of
code in isolation, independently from the context where the
code will be used.

An APV tool, when run, attempts to build a proof of
memory safety of the program. Rarely is a software project
entirely safe and, consequently, a proof can be actually built.
However, the results of the proof attempt performed by
Infer™ constitute an information goldmine on the safety of
parts of the entire project (e.g., proofs for certain procedures
or the discovery of bugs for others). The question then arises
ot how to mine and interpret this host of information.

The present matter describes a method and system for
extracting, classifying, post-processing, and displaying the
results of verification tools such as Infer™ or any other suit-
able APV tool, and interprets them in relation to the quality of
the software analyzed.

As mentioned above the present method for displaying
software quality is based on the combination of three kinds of
objective software metrics: evidence metrics, counter-evi-
dence metrics, and importance metrics. The interaction of
these three metrics may be pictured with a graphical repre-
sentation—called quality map—which is used to display the
health status of a software system made up of individual
components, in analogy with what an x-ray does for the
tissues in an organism. This analogy also illustrates why a
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single metric is not sufficient to support quality assurance,
even one constructed by the combination of objective metrics.
For example, an ordered list of the most damaged tissue
components would be a poor basis to decide on whether and
where to operate. The advantage of a graphical representation
of software quality is that it allows different users to examine
different aspects of the software, and focus on what matters
for them at the time to make changes and their effect in the
context of the overall software project. Other non graphical
representation of the display may also be used, such as an
ordered list or table for example.

The need for the metrics may be better illustrated by refer-
ring to a call graph 200 of a software project illustrated in FIG.
2 where the software project is composed of a set of proce-
dures {P1, . .., P10} each accompanied by an ordered pair of
numbers indicating for the procedure Pi the number of in-
calls and out-calls. Assume that procedures P7 and P3 contain
a bug, for example a memory leak. Further assume that there
is a restriction present whereby one or the other of the
memory leaks could be fixed but not both. The question then
arises of which one should be fixed? Although it is the same
type of defectin each case, a sensible goal is to fix the one that,
in the larger picture, has a greater impact on the overall
quality of the software project. The call graph shows that P7
is called by six (6) other procedures (taking into account the
transitive closure of the call relation), whereas P3 is only
called by one (1) other procedure. Intuitively, a developer
working in a bottom-up fashion would want to fix the leak in
P7 since having this procedure operate correctly is outwardly
more central to the proper operation of the whole project.
Another developer working in a top-down fashion might
instead want to fix P3 first, since P3 calls one procedure while
P7 calls none. The definition of call rank has parameters to
specify the relative importance of in-calls and out-calls, to
cater for a range of possible uses.

The metrics are further explained as below:

a) The evidence metric (EM) of software quality indicates
how closely a component adheres to its specification. This is
a measure of conformance to an objective property, which
could be established by a variety of means. Examples of
properties include that a program will not have memory errors
when executed, or that every file opened will eventually be
closed. Various means of supporting an evidence metric are
possible in principle, from the automatic execution of a soft-
ware analysis tool to manual inspection and certification. An
example of a method to compute an EM is called Spec Cov-
erage (SC), whereby a program is executed to automatically
inspect the source code of the component and determine what
portions of the component can be proven to be free from
certain software defects.

b) The Counter-Evidence Metric is a measure of anecdotal
evidence that a software component could operate outside the
range of acceptable behaviors. Two factors distinguishing it
from an Evidence Metric are: that it indicates deviation from
normal operation; and that it provides no guarantee that the
component can behave incorrectly. Since no guarantee is
needed, a metric of this kind is simpler and cheaper to imple-
ment, but the results tend to be less trustworthy. A method to
compute a Counter-Evidence Metric called Defect Density
(DD), is described whereby an automatic program is used to
inspect the source code of the component and find potential
violations of coding rules which may indicate the presence of
certain software defects.

¢) The Importance Metric measures the importance or rel-
evance of a software component. Such a metric is based on
some simple measure of size of a component, such as the
number of lines of source code, or the size of its representa-
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tion in an abstract model. However, a metric based on the
relationship between components, taking into account their
behavior and dependencies may be better. Here we describe
an automatic method to compute an Importance Metric called
Call Rank (CR) as one example only, whereby the importance
is determined after source code is analyzed by a combination
of the dominance of the procedures in the call graph, and a
measure of conformance of calls between them.

Referring to FIG. 3 there is shown a 2-dimensional graphi-
cal display of a quality map generated as an output from a tool
for processing results from a static code analysis module
using the three metrics to obtain a display of the quality map
according to an embodiment of the present matter. The dis-
play application 127 combines the three metrics in several
different ways to obtain and display the quality maps for the
software code 130 being analyzed. The metrics may provide
a mapping of components into a 3-dimensional space or a
2-dimensional picture or map may be generated by assigning
two of the metrics to an X and Y axes respectively, and using
the third metric to determine the displayed appearance of
components, for example colour or pattern as specifically
illustrated in FIG. 3.

There are three kinds of Quality Maps each corresponding
to the metric used on the X andY axis respectivelyi.e. SC-CR,
SC-DD, and DD-CR. FIG. 3 there is shown one embodiment
of a SC-CR Quality Map 300, where the X axis is Proof
Coverage, the Y axis is the Call Rank. Each of the axes
represents a scale in a range of 0 to 100%. Each component
(typically a procedure) in the software project is represented
by a circle where a size (radius) of a circle and pattern (or
color) is determined by the number of lines of code in the
component and defect density respectively. In the illustrated
example the quality map 200 of the software project com-
prises six components, therefore six circles 302, 304, 306,
308, 310, 312 are represented.

The map 300 may be used to quickly identify the compo-
nents of critical importance for quality assurance in the soft-
ware project. The map is divided into four quadrants labeled
11, 10, 00, 01, clockwise starting from top right:

i. Quadrant 11 contains components with high SC and high
CR. These components are the quality champions of the
project.

ii. Quadrant 10 contains components with high SC and low
CR. These components are of secondary importance.

iii. Quadrant 00 contains components with low SC and low
CR. These components are in need of improvement, but
their importance is limited.

iv. Quadrant 01 contains components with low SC and high
CR. These components are where the effort should be
concentrated in order to improve the overall quality of'a
project.

For a SC-DD Quality Map (not shown), the four quadrants

classify components in the following way:

i. Quadrant 11 contains components with high SC and high
DD. These components contain bugs affecting only few
execution paths.

ii. Quadrant 10 contains components with high SC and low
DD. These components are of good quality.

iii. Quadrant 00 contains components with low SC and low
DD. These are components of which not much is known.

iv. Quadrant 01 contains components with low SC and high
DD. These components are of poor quality.

A DD-CR Quality Map (not shown) is similar to a SC-CR

Quality Map, without the guarantees of Proof Coverage.

One of the technical advantages of the present matter is that
as a software project evolves over time, the values of the
metrics for its components evolve too and may be displayed
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as a sequence of quality maps in time which displays the
dynamic unfolding of the metrics at each point in time. This
quality evolution can be displayed in a dynamic way as a
movie.

Alternatively, a static display method for quality evolution
is illustrated in FIG. 4 for a single component 402. The
display comprises a 2-dimensional map, where a displayed
aspect of each component contains a clue for the evolution
trend of that component, such as an arrow 404 of a given
length, whose direction indicates where the component is
moving in terms of quality and the length indicates the veloc-
ity or rate at which the quality is changing as for example
illustrated in FIG. 4 which shows that component at different
times t1, t2 and t3. This can be a useful tool to a software
project manager.

While the above provides a general description of the util-
ity of quality maps, below is a technical description of the
three metrics for producing software quality maps. We first
give a description using procedures as basic software com-
ponents. The description is then extended to different kinds of
components (such as files or modules).

For ease of description, the following C language code
fragment for a procedure testV1 () is used to illustrate spec
coverage:

1 void testV1(int flag) {
int *x = NULL;
if(flag) {
x = malloc(sizeof(int));
// V21 if(1x) return;
*x =3;
foo(x);
*x =2;
foo(x); }
0 *x=0;// V3 if(x) *x = 0;
1 free(x); }

== \D 0~ Oy W N

The Spec Coverage SC(p) of a procedure p, which exem-
plifies the EM, is a value in the range [0; 1], indicating
the proportion of the procedure which is known to adhere
to its specification. In other words spec coverage quantifies
certain ways of multiple ways of execution of a component
which are error free. This does not depend on a specific way
of computing Spec Coverage. The Spec Coverage SC(F) of a

computed as follows:

D WP «SCip)

iton
ScFy=Ztem
Wip;
;:12.?.;1 (p)

where W(pi) is the Weight of procedure pi. The Weight is a
measure of the size of a procedure with respect to some
concern. One example of weight is the number of lines of
code in the implementation of the procedure, or the number of
nodes in its control flow graph, or some other relevant mea-
sure attributable to the procedure in isolation.

For example, consider procedure testV1( ) above. It con-
tains two memory errors i.e. if flag is true, then we have a
possible NULL pointer dereference on line 5 in case malloc
fails to allocate memory. If instead flag is false, we have a
NULL pointer dereference on line 10. Internally, the control
flow graph consists of 16 nodes, but because of the memory
errors, no spec can be found, so the spec coverage is O.
Suppose that for some reason, only one of the bugs can be
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fixed: by either enabling the line marked with V2 or the line
marked with V3. In the first case, precondition flag!=0 is
found with spec coverage 0.95 (only one node is not covered,
indicating the false part of the conditional), and in the second
case precondition flag==0 is found with spec coverage 0.47
(the entire true branch of the conditional is not covered).
Next, assume a known method to compute a function
Defects(p; t), for example compilation errors, returns a set
of defects of type t for each procedure p. An example t
of defect is a memory leak, where memory allocated during
the execution of a procedure is never reclaimed. The method
is independent from how the set of defects is computed.
Several manual and automatic methods exist to find candidate
defects in software. The Defect Density DD(F; t) of a file

Z Wi(p;) =#Defects(p;, 1)
DD(F. 1) = i=L...n

_712 Wipi)

where # denotes the cardinality of a set, and where W(pi) is
the Weight of procedure pi.

The Call Rank CR(p) of a procedure p indicates the impor-
tance of p in relation to other procedures. The importance is
computed by combining the dominance of p in the call graph
and the success rate of calls to p. The dominance of a proce-
dure p is computed from the call graph: a set P of procedures,
and a set

E < PxP of call edges. An edge (pl, p2)eE indicates that
procedure pl may call procedure p2. Notation pl—=p2 indi-
cates (pl, p2)eE, and —* denotes the reflexive and transitive
closure of —. The formal definition of Dominance Dom(p,
cl,c2)is

InCalls(p)={p=plp'—*p}
OutCalls(p)={p=plp—*p}

Dom(p,c;, ¢)=c*#InCalls(p)+c, *#0utCalls(p)

where # denotes the cardinality of a set, and the constant c1
(resp. c2) specifies the relative importance of the procedures
calling (resp. being called by) the procedure in question.

The success rate Succ(pl; p2) of a call from procedure pl
to procedure p2 is a number in the range [0; 1]. It is computed
during analysis of the source code as the ratio of successful
calls from p1 to p2, where a call is successful when it estab-
lishes the requirements in p2’s specification. For example, if
pl has one parameter x and the requirements in p2’s specifi-
cation are that x be negative, three calls with values 0; 1; -1
will give a success rate Succ(pl; p2)=0:3.

The Call Rank CR(p, c1, ¢2) of procedure p is then com-
puted as follows

Dom(p’, ¢y, c2)

CR(p, c1, ¢2) = Succr’, p)

p'1p’ —p}

where the importance of the caller Dom(p', c1, c2) is posi-
tively correlated and the success rate Succ(p', p) is negatively
correlated. The rationale is that a higher call rank will be
assigned to p when it is called by important procedures with
low success rate, because this means that p could have a high
impact on the overall quality of the project. The Call Rank
CR(F, cl, c2) for file F is then computed as follows:
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Dom(p’, ¢y, ¢
CR(F.c1.e0) = e
uee(p’,
(' ¢Flp’ —F) pp

Referring now to FIG. 5B, there is shown a flow chart 500
of a generalized method according to an embodiment of the
subject invention. In general the method 500 starts with
execution of an analysis tool using for example a code ana-
lyzer 126 to analyze source code components of a target file or
procedure 130 stored in memory 132, generating 506 a list of
defects and a list of specs (where as defined earlier a specifi-
cation for a procedure is a correctness proof which maps a
pre-condition to one or more post conditions); computing
508, using the output of step 506, the values of spec coverage,
defect density and call rank, using the values from step 508
for the selected metrics(SC-CR, SC-DD, and DD-CR) to
generate the X and Y coordinates for the step of displaying
(generating) 512 the quality map an example of which is
exemplified in FIG. 3.

A software project may contain many files or procedures so
that its quality map is crowded with many overlapping
bubbles and colors. The ability to generate individual images
by directory can help, but often a quality map of the whole
project is still desired. In these cases, the ability to aggregate
data can also be helpful. One method for aggregating data is
based on quad-trees. Here ‘quad’ refers to ‘quadrant’. Any
square grid has the property that it can be divided into 4 equal
quadrants. Of course, each quadrant itself is also square, so
each can be further divided into 4 equal areas. With quad-tree
aggregation, all of the bubbles falling within a quadrant are
averaged together and displayed as a single bubble. As an
example aggregations include: the files grouped by the direc-
tory they belong to, the files or procedures grouped by author,
or by modification week, or by product in a software product
line. Formally, an aggregate A={al, . . ., an} consists of a
collection of measurable entities al to an, where a measurable
entity is any entity on which the metrics SC, DD, CR and W
can be defined. For example, files and procedures are mea-
surable entities. The notions of Weight, Spec Coverage,
Defect Density, and Call Rank extend to aggregates in the
following way

W= > Wy
i=l...n
W(ay) = SCla)
SC(A) _ i=l..n W(A)

Z Wia) = DD(a;, )
DD(A, [)= i=l...n W(A)
Z W(a;)+ CR(ai, 1)

i=1...
CR(A, c1, ¢2) = =" D

The resulting aggregates with the measures defined in this
way are themselves measurable entities, and can be further
aggregated.

It has been shown earlier how two metrics can be used to
define the X and Y axes on the plane, and the third one to
determine the displayed appearance. The division into four
quadrants labeled 01, 11, 10, and 00 can be used to form a
basic aggregation, where measurable entities are grouped by
quadrant. In other words, this construction produces up to
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four aggregates, one for each quadrant containing at least one
entity. More generally, let n be the desired nesting level. The
first four quadrants are at nesting level 1. Each non-empty
quadrant at nesting level k can then be further subdivided into
up to four sub-quadrants at nesting level k+1. This subdivi-
sion proceeds until the desired nesting level n has been
reached. This quad tree (here “quad: refers to a “quadrant™)
aggregation algorithm produces up to 2" aggregates. For
example, letnbe 2, and let quadrant 10 be the only non-empty
one. A further subdivision produces four sub quadrants
labeled 10:00, 10:01, 10:10 and 10:11.

The generalized method of exemplified earlier may be
better understood by referring to an example calculation of
metrics. For this example consider the C language code frag-
ment below with three procedures.

01 void P1(int *x) {
02 printf(“in P1\n");
03}

04

05 void P2(int *x) {

06 printf(“in P2\n);

07 }

08

09 void P3(int flag) {

10 int *x = NULL;

11 if(flag) {

12 x = malloc(sizeof(int));
13 if(1x) return;

14 *x=3;

15 P1(x);

16 *x=2;

17 P2(x);

18

19 *x = 0; // Bug: NULL pointer dereference
20 free(x);

21}

The call graph 600 for procedures P1, P2, and P3 is shown
in FIG. 6.

Referring to FIG. 7 there is shown a flow chart 700 for
calculating the metrics discussed earlier. For each procedure
Pi in the call graph 600, the call rank is calculated as follows:
The number of incoming calls is indicated as in: . . . and the
The Call Rank is
computed as the sum of incoming and outgoing calls, so the
calculation is X1=140 and X2=1+0 and X3=0+2.

For calculating spec coverage, consider procedure P3. The
code contains one memory error at line 19. The automatic
analysis enumerates two cases when analyzing the condi-
tional on line 11:

Case flag!=0: no bug is encountered, and one proof is

found.
Case flag==0: one NULL pointer dereference bug is found
on line 19.

If the INFER™ program is used it finds one spec with
precondition flag!=0. Internally, the control flow graph con-
sists of 21 nodes, and the condition flag!=0 excludes exactly
one node: the node on line 11 corresponding to the false part
of the conditional. The computed Spec Coverage is 0.95,
corresponding to 20 nodes out of 21. In case of P1 and P2, the
control flow graph consists of 5 nodes, there are no bugs, and
the Spec Coverage is 1.0. The calculation is Y1=5/5 and
Y2=5/5 and Y3=20/21

Calculating procedure weight is simply the number of
nodes in the control flow graph. The calculation is Z1=5 and
72=5 and 73=21.

The Bug Density is computed as the number of bugs
divided by the Procedure Weight. The calculation is C1=0/5
and C2=0/5 and C3=1/21.
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Results of calculations:
Xl=1 Y1=1.0 Z1=5 Cl1=0:0
X2=1 Y2=1.0 72=5 C2=0:0
X3=2 Y3=095 73=21 C3=0.05.

These results may then be plotted (not shown) as a quality
map for each data point DPi=(X, Y, Z, C) corresponding to
each procedure Pi similar to that as exemplified in FIG. 3
described earlier.

As will be appreciated the methods described herein may
be embodied on a computer readable medium.

The embodiments described herein are examples of struc-
tures, systems or methods having elements corresponding to
elements of the techniques of this application. This written
description may enable those skilled in the art to make and use
embodiments having alternative elements that likewise cor-
respond to the elements of the techniques of this application.
The intended scope of the techniques of this application thus
includes other structures, systems or methods that do not
differ from the techniques of this application as described
herein, and further includes other structures, systems or meth-
ods with insubstantial differences from the techniques of this
application as described herein.

The invention claimed is:
1. A method performed by a computing system, compris-
ing:
receiving, by a code analyzer, program code, wherein the
received program code has no annotations;
generating, by the code analyzer, a list of defects in the
program code based on an analysis of the program code
without requiring modification of the program code;
generating a list of specifications for the program code;
computing, using the generated list of defects and the gen-
erated list of specifications, values for one or more of a
specification coverage, a defect density, or a call rank for
the received program code;
generating, based on one or more of the specification cov-
erage, the defect density, or the call rank, a quality map
for the received program code to provide a visual indi-
cation of quality of the received program code;
generating a set of aggregates for procedures in the pro-
gram code, each aggregate of the set of aggregates being
acollection of procedures grouped based on a factor, the
factor including any of author, modification week, or
product;
generating, for each aggregate of the set of aggregates, one
or more of an aggregated specification coverage, an
aggregated defect density, or an aggregated call rank for
the collection of procedures in the aggregate; and
generating, based on the one or more of the aggregated
specification coverage, the aggregated defect density, or
the aggregated call rank, an updated quality map for the
set of aggregates, the updated quality map including four
quadrants, each quadrant corresponding to two quality
metrics selected from any of the aggregated specifica-
tion coverage, the aggregated defect density, or the
aggregated call rank.
2. The method of claim 1, wherein the program code is
source code.
3. The method of claim 1, wherein the program code is
object code.
4. The method of claim 1, wherein a defect in the generated
list of defects is an unintended consequence of executing the
received program code.
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5. The method of claim 1, wherein a specification in the list
of specifications specifies a pre-condition for a procedure in
the received program code.

6. The method of claim 1, wherein a specification in the list
of specifications specifies a post-condition for a procedure in
the received program code.

7. The method of claim 1, wherein computing the specifi-
cation coverage includes computing, for a procedure in the
received program code, a count of possible execution paths
covered by the generated list of specifications.

8. The method of claim 1, wherein computing the specifi-
cation coverage includes computing

> Wip)=SCip)

iton
o1 P S—
Wip;
;:12.?. n )

wherein SC(F) is the specification coverage for a program
code file F, wherein the program code file F comprises pro-
cedures p, to p,,, wherein SC(p,) is the specification coverage
of'a procedure p;, and wherein W(p,) is a measure of a size of
a procedure p,.

9. The method of claim 8, wherein the size is a number of
lines of program code.

10. The method of claim 8, wherein the size is a count of a
number of nodes of a control flow graph generated for the
procedure p,.

11. The method of claim 1, wherein computing the defect
density includes computing, for a procedure in the received
program code, a count of runtime violations of the generated
list of specifications.

12. The method of claim 1, wherein computing the defect
density includes computing

Z Wi(p;) =#Defects(p;, 1)
DD(F. 1) = i=L...n

_712 Wipi)

wherein DD(F,t) is the defect density for a program code file
F, wherein t specifies a type of defect, wherein the program
code file F comprises procedures p, to p,,, wherein #Defects
(p;> ©) is a cardinality of a set of defects of type t for the
procedure p,, and wherein W(p,) is a measure of a size of a
procedure p,.

13. The method of claim 1, wherein computing the call
rank for the received program code includes computing an
importance metric for the received program code.

14. The method of claim 13, wherein a first procedure in the
received program code is more important than a second pro-
cedure in the received program code if the first procedure is
invoked more often than the second procedure.

15. The method of claim 13, further comprising computing
the importance metric by computing a dominance of proce-
dures in a call graph and a conformance of calls between the
procedures.

16. The method of claim 1, wherein the quality map is
generated based on the specification coverage and the defect
density, wherein a high quality first metric is a high specifi-
cation coverage and a low quality first metric is a low speci-
fication coverage, and wherein a high quality second metric is
a high defect density and a low quality second metric is a low
defect density.
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17. The method of claim 1, wherein the quality map is
generated based on the specification coverage and the call
rank, wherein a high quality first metric is a high specification
coverage and a low quality first metric is a low specification
coverage, and wherein a high quality second metric is a high
call rank and a low quality second metric is a low call rank.

18. The method of claim 1, wherein the quality map is
generated based on the defect density and the call rank,
wherein a high quality first metric is a high defect density and
a low quality first metric is a low defect density, and wherein
a high quality second metric is a high call rank and a low
quality second metric is a low call rank.

19. One or more memories having stored thereon com-
puter-executable instructions, comprising:

instructions for receiving, by a code analyzer, program

code, wherein the received program code has no anno-
tations;
instructions for generating a list of defects in the program
code based on an analysis of the program code without
requiring modification of the program code;

instructions for generating a list of specifications for the
program code;

instructions for computing, using the generated list of

defects and the generated list of specifications, values
for one or more of a specification coverage, a defect
density, or a call rank for the received program code;
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instructions for generating a quality map for the received
program code, to provide a visual indication of quality of
the received program code;

instructions for generating a set of aggregates for proce-
dures in the program code, each aggregate of the set of
aggregates being a collection of procedures grouped
based on a factor, the factor including any of author,
modification week, or product;

instructions for generating, for each aggregate of the set of
aggregates, one or more of an aggregated specification
coverage, an aggregated defect density, or an aggregated
call rank for the collection of procedures in the aggre-
gate; and

instructions for generating, based on the one or more of the
aggregated specification coverage, the aggregated
defect density, or the aggregated call rank, an updated
quality map for the set of aggregates, the updated quality
map including four quadrants, each quadrant corre-
sponding to two quality metrics selected from any of'the
aggregated specification coverage, the aggregated
defect density, or the aggregated call rank.

20. The one or more memories of claim 19, wherein the

program code is source code.

#* #* #* #* #*



